Erratum: Transition operators in electromagnetic-wave diffraction theory. II. Applications to optics
 [Phys. Rev. E 47, 1337 (1993)]

G. E. Hahne

[S1063-651X(96)12010-9]

PACS number(s): 42.25.Fx, 03.50.De, 03.40.Kf, 42.15.Gs, 99.10.+g

This article needs four corrections.

First, Eq. (118) was given incorrectly as a copy of the previous equation, and should read as follows:

$$
\stackrel{\circ}{P_{\Sigma_{a}}^{M \downarrow+}}=\left[\begin{array}{cc}
\breve{Z}_{\Sigma_{a}, k_{0}}^{+}\left(\breve{A}_{\Sigma_{a}}^{M} \breve{Z}_{\Sigma_{a}, k_{0}}^{+}+\breve{C}_{\Sigma_{a}}^{M}\right)^{-1} \breve{A}_{\Sigma_{a}}^{M} & \breve{Z}_{\Sigma_{a}, k_{0}}^{+}\left(\breve{A}_{\Sigma_{a}}^{M} \breve{Z}_{\Sigma_{a}, k_{0}}^{+}+\breve{C}_{\Sigma_{a}}^{M}\right)^{-1} \breve{C}_{\Sigma_{a}}^{M} \tag{118}\\
\left(\breve{A}_{\Sigma_{a}}^{M} \breve{Z}_{\Sigma_{a}, k_{0}}^{+}+\breve{C}_{\Sigma_{a}}^{M}\right)^{-1} \breve{A}_{\Sigma_{a}}^{M} & \left(\breve{A}_{\Sigma_{a}}^{M} \breve{Z}_{\Sigma_{a}, k_{0}}^{+}+\breve{C}_{\Sigma_{a}}^{M}\right)^{-1} \breve{C}_{\Sigma_{a}}^{M}
\end{array}\right] .
$$

Second, there is an incorrect subscript in the lower right corner entry on the right-hand side of Eq. (B34). The equation should be

$$
\mathcal{P}_{\Sigma_{b}, \Sigma_{a}}^{F+}\left(\vec{r}_{\Sigma_{b}} ; \vec{r}_{\Sigma_{a}}\right) \equiv\left[\begin{array}{cl}
-\frac{\partial G_{k_{0}}^{+}}{\partial n_{\Sigma_{a}}}\left(\vec{r}_{\Sigma_{b}} ; \vec{r}_{\Sigma_{a}}\right) & G_{k_{0}}^{+}\left(\vec{r}_{\Sigma_{b}} ; \vec{r}_{\Sigma_{a}}\right) \tag{B34}\\
-\frac{\partial^{2} G_{k_{0}}^{+}}{\partial n_{\Sigma_{b}} \partial n_{\Sigma_{a}}}\left(\vec{r}_{\Sigma_{b}} ; \vec{r}_{\Sigma_{a}}\right) & \frac{\partial G_{k_{0}}^{+}}{\partial n_{\Sigma_{b}}}\left(\vec{r}_{\Sigma_{b}} ; \vec{r}_{\Sigma_{a}}\right)
\end{array}\right]
$$

Third, the author's name in Ref. [6] is spelled incorrectly; the reference should be
[6] A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd ed. (Princeton University Press, Princeton, NJ, 1960).

Fourth, this article and its predecessor Ref. [1] gave an incomplete attribution of the origin of the idea of using approximate boundary conditions of the impedance type ('Leontovich boundary conditions') for electromagnetic-wave scattering. A recently published historical article—Ref. [2]—argued that Shchukin (cf. Ref. [3]) as well as Leontovich proposed this approximation scheme independently and at about the same time. The authors of Ref. [2] state in effect that fairness justifies the use of such a term as 'Shchukin-Leontovich boundary conditions' in this instance.
[1] G. E. Hahne, Phys. Rev. E 45, 7526 (1992).
[2] G. Pelosi and P. Ya. Ufimtsev, IEEE Antennas Propag. Mag. 38, 31 (1996).
[3] A. N. Shchukin, Propagation of Radio Waves (Svyazizdat, Moscow, 1940).

Erratum: Zipf's law in percolation
 [Phys. Rev. E 53, 4187 (1996)]

Makoto S. Watanabe

[S1063-651X(96)12110-3]
PACS number(s): 05.70.Jk, $05.90 .+\mathrm{m}, 99.10 .+\mathrm{g}$

Inadvertently, a drafting error was introduced during the production process. The abscissa label of Fig. 1 should read $\log _{10}(n)$, not $\log _{10}\left(s_{n}\right)$. The corrected version of Fig. 1 is reproduced below.

1063-651X/96/54(4)/4483(1)/\$10.00

FIG. 1. A $\log -\log$ plot of the relation between cluster sizes s_{n} and their ranks n in the size order on the square lattice with $L=200$. Filled squares are for $p=0.5000$, open squares for $p=0.5500$, filled circles for $p=0.5720$, and open circles for $p=0.5760$. Straight lines show the least-squares fitting of the relation. Error bars are the standard deviations of the sizes.

Erratum: Spatial Doppler anomaly in an excitable medium
 [Phys. Rev. E 54, 1120 (1996)]

M. Wellner, A. M. Pertsov, and J. Jalife
[S1063-651X(96)08411-5]

PACS number(s): 82.40.Ck, 99.10.+g

In Eq. (1), the term $+G \partial_{x} u$ should read $-G \partial_{x} u$. The correct sign was used in the calculations. Two lines below Eq. (26), instead of " 324 ," read ' 32.4 ." The correct value was used in the calculations.

